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SOHE REMARKSON DYN/_II C SOARING

Dr. E. Fritsch !

ABSTRACT. Extensive idealization of dynamic soaring makes
it possible to treat the problem completeiy analytically.
The influence of wind shear, air speed, lift-drag ratio and
the a,_g_e of inclination of the flight path on dE/dh is
ca|cuiated. A relationship is also derived for the antici-
pated cruising speed in the jet stream. The most satis-
factory air speed and optimum angle of _nclination of the
fl. ight path are determined for the given values. The
cruising speeds ar..d gains of energy to be expected in the
jet stream are estimated numerically. Some hints for the
pilot regarding flight .in the jet stream are given in the
paper.

i

Some Remarks on Dynamic Soar:ng

The glider pilot uses available thermals as well &s upwinds and ascending /i*

air currents as sources of energy. The albatross shows us that it is tec_hni-

; _ally possible to make longer soaring flights by certain flight maneuvers in a

layer-where the wind intensity varies-with altitude. The-w_nd shear is pa_iE_-

ularly strong in the jet stream. Our knowledge in this area has recently been

expanded [1], and has reached the point wher_ we can expect the first tests

using gliders to begin in the near future [2].

• The principle of dynamic soaring flight can be explained by a numerical :

example.

- The wind velocity at a given altitude is I0 km/h greater than thu wind

_elocity at the surface of the water. An albatross is flying against the wind

a short distance above the water, at SO km/h (Figure i, !). When it climbs to

to layer having a velocity i0 km/h greater, it flies at a speed of 60 km/h

•elatiw to the surrounding air. It then turns so that it is flying with the

Wind at a speed of 60 km/h rel_tive to the surrounding air (3). Its speed irelative to th_ .iz is thereby retained. This means that it is traveling 70

km/h relative to the ground. It retains this speed relative to the ground even'!
i i

1Aeroclub of the GDR. i I
•-Numbers in the margin indicate paginatlon in the foreign text. I
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while descending to zero altitude at (4). As we can see, the albatross gains

considerable 3peed without physical exertion.

Figure ].

The change in velocity owing to th. • conversion of potential energy and the :s

wind velocity that may be present at zero altitude need not be taken into con-
3

sideration in this cyclic process. Their effects cancel each other out in the

long run.

Can we do the same as the albatross? " _
c

]. Energy Balance During Flight in a CUrrent with Strong Wind Shear ;/1 %

The aircraft flies on a path with an instantaneous angle of inclination d _:

(Figure i). The equation of motion is as follows: _%_

dvH _ = -Hg sin -W(v) (i)

V+ is the speed of an inertial system. This speed is

measured by an outside observer.

Y is the speed r_lative to the surrounding air. This

speed is shown Lon an indicator in the aircraft.

M is the mass oflth_ aircraft.



g is the acceleration due to gravity,

W (V) is the air resistance of the aircraft.

_rom Figure 2 we can see that

w (h) is the speed of the wind as a function
l

- of the altitude.

_--- ....=-_.- _
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we will have from Equations (I) to (4)

dv
M _=-Mg • sin a -Mg • ¢ -My dw[h)d----h--sin a cos a (5)

tn the following, we shall use u to represent the change in wind velocity with /2
dw

altitude, _ .

Is it possible to make the energy balance positive during one flight

phase?

The energy balance is obtained in the usual way from the equation of

motion (5) by multiplying it by the velocity and rearranging the equation. We

then have

dE d M v2
dt _ (_ +Mgh) = Mv fvu*sin a cos a -gs) (6)

The energy gain with height is mor_ in_terestingfor the problem at hand

than is the energy gain with time.

With (4) and (6), this relationship will be

-- dr E* _ _-- ) .................(_.

dE
where _ depends on the angle of inclination of the flight path. :

From ,-- ( = 0, we have the definitive equation
Q_

sin a = _ • Jcos a (8) ...
U " V

,forthe most favorable angle of inclination.

"- In most cases, c_os a can be equa_ed to I (for example, _cos 40_ = 0.91).I/_3 -'_
Y

A comparison of the solution by means df the approximation c_sosa = 1 with a __

graphic solution yielded an error of 1° for the values given in this section.
E

"= According to (3), the change in s_eed with altitude can amount to 20 knots/'
-2 -I . m/s

1000 feet (or 3.28"10 S = 3.,8 0_6-_m). The performance data of the glider mm_

give 1/e = 33 at V = 200 km/h. This i_formation assumes that the air density

I0 km up is only 25% of the value near Itheground. All values given for normal

air densities are therefore multipli_:_,_ythe factor 2. The performance dataI
of the "Foka 4A" glider were used in c_Iculating all _ ,erical values (Table 1)

.................................................
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TABLE ] /I_S.S

V km/h 1/_ e/V • lO " s
m

160 32 o. 7
186 34 o.57
200 33 o. _4 --

' 240 27 0.55
280 22 O. 59
320 17.3 0.65
360 14.3 0.7
4OO 12 0.75
440 i0 0.82

The table is based on the performance figures for the Foka 4A
giider. The speeds given by the manufacturer are mu]tip]ied
by a factor of 2, in order to take into account the fact that

" the air density l0 km above sea level is Four times iess.
J

For u = 3.28 " 10-2 S-1 we obtain the values

o¢= 33°

and ..... f
1

dF.

= 0.i Hg _ -

This corresponds to i :

= 3 Mgm/sdt

_r a climb of 3 m/s in the thermal. For the sake o£ demonstration, let v.u = .

- The corresponding values for u = 1'.64 " 10 -2 S -1 are -_

o. = 39° ;2

dE
=:0.025 Hg

dE
-- = 0.8 Hg m/s

=m dt

How must the pilot fly in order to: attain the calculated values? He knows /__4

neither the most suitable angle o£ climb nor the value of u.

A pilot cannot calculate any extreme values in flight; for this reason, an
.......................

5
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instrt_ment mu_t take over the job. In flights in the regime under discussion,
dE

the pilot should have an instrument that shows him the value _-_. It can be

calculated most simply by means of the equation

5

"dE E*
d-_,= h--*

, dE

_ This relationship is exactly valid. The value _ is provided by the familiar
dh

"Tevar'" and _ by the still more familiar rate-of-climb meter. The quotient

is obtained from the two values. This is a task that the instrument industry

can probably handle.

dF

The pilot must control the angle of climb so that _ is c_nstantly at a

maximum. The most favorable angle will be somewhat less than 45°.

The above is a typical statement of the problem for soaring flight. During

flight in a thermal, for example, the most favorable banking angle and speed in

circular flight are known approximately. They must be re-established at each

new level with considerable piloting skill. The sole criterion is that the

climb must be as great as possible.

2. Estimating the Cruising Speed in the Jet Stream

The energy gain is greater than zero. This makes it possible to fly along

a path.

The flight tactics are as follows:

To begin with, the pilot flies upward along a path with a large angle of

i_Iclination into a layer with a higher wind velocity (Figure 4) and then down

again on a path with a smaller angle of inclination. In order to keep the

calzulations simple, we will assume that the difference in height is so slight

that the changes in speed caused by flying upward and downward remain small

relative to the air speed. We then can assume that the speed is constant #

during the flight, j

Th_ cruising speed VR is obtained by definition from !/_5

X* - X

VR= t* +-----T (9), ,

(see Figure 4 for symbols), i

I
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Figure 3.



Here t is the duration of the climb and t* is the duration of the descent.

With the aid of t* = S*/v, t = s/v and elementary angle relationships ?_om

Figure 4, we obtain

sin (a - a*) (I0)Ve = V sin _ + sin _*

I

The angles a and a* are not chosen freely. It is necessary to ensure that the

cycle of climbing and descent can be repeated continuously. The integral of

the energy balance during a cycle must be zero, i.e.,

dE = _ dE dE dE_- " dh = ./ _- " dh + f _" • dh = 0 (119

cycle cl imb des cent

Within the framework of our approximation, we obtain with (7) and hclim b =

= hdescen t

- g'_ + cos a* - g" _
cos a u-v'sin a v-u.sin a* = 0 (129

The calculation of the extreme value of VR = VR (e) with secondary condition

_ (129 involves vague calculations. For this reason, we have calculated-two

versions, of which the more suitable will be selected for further study.

Vers ion ]

The climb takes place along a path with maximum dE/dh. The descent is

such that Equation (12) is fulfilled. This means the following flight tactics

for the p£1ot: i/6

_ The climb is made in the manner described in Section I. The pilot notes

the value of . The angle of inclination is reduced until _- is negative and

of the same magnitude as in the climb. This type of flight guarantees that the ?

cycle can be repeated in full. ._

With an aircraft of the given performance class (Table 1), we will have

for u = 5.28"10 -2 S-I

a* = 7°

and

Vg = V " 0.65 = 130 km/h

8

: IC r-" ...... • "-- -I -,
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-2 -I
The corresponding values for u = 1.64"10 S are

a* = 16°

VR = V • 0.44 = 88 km/h

Vers ion 2

dE
' The pilot controls the angles of climb and descent so that _ isjrequal to

zero. Equations (ii) and (12) are thereby always fulfilled. Since
dE ill

= _. V sin a, the pilot requires for this flight regime only a "Tevar" in

addition to his regular instruments.

dE dE

For the same tanglea, dr- and a_ have a value of zero. The function

dE

H(v.u.sin a-cos a - ge) = H(_ sin 2a E) 0d-E = - g- =

has two zero points for 0 < _ < 90°. They are calculated from

sin 2a = 2 g-e. (13)V'U

For VU >> g'e they are approximately

cos a = KLE_ sin a : 1
V'U

(14)
sin _* = g'e cos a* = 1

V'U

_le error in approximation in this section has a maximum of 6%.

The calculation of the cruising speed is considerably simplified by (14). /7

We will have

VR= V (1 -g_v.u ) (is)

For u = 3.28-10 -2 S-1 we will have a cruising speed of

VR = V'0.84 = 168 km/h

The angles are: a = 80 °

6" = I0 °

For u = 1.64"10 -2 S-I w,:will have _

!
VR = V'0.6 = 120 km/h _

with

..... '

J
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= 70°

a* = 20°

The comparison shows that the second version is superior to the first. In the

following, only the second version will be used in all cases.

The angle of climb in the second version is very steep. Results of the/

same magnitude can be obtained by making flights in one direction with large

angles of climb and small angles of descent. This makes it unnecessai_ to

change course constantly.

The derived relationships are retained except for the signs. For the

cruising speed we will have, for example,

sin (e+_*)
VR = V. sin a + sin e*

If the angles are small, we will have

ct+ct*

VR ---= V= V _+C&*

An accurate analysis of this type of flight probably also gives a high cruisl,g/8

speed. The accelerations in this version will be very :._.- Th_si_-a _-act -

that is of no inconsiderable importance on long-distance flights. Because of _

the complicated calculations, this (probably more suitable) version will not be

examined further in this paper.

3. Optimum Air Speed

In the above examples, the air speed and lift-drag ratio were given and

the most favorable angle of inclination for the flight path was calculated as
dE

a function of the particular goal (_ _ max or VR _ max) . Th_ angles depend, _

among other things, on the speed and the lift-drag ratio. We shall now assume

that the polars assumed for stationary flight are also valid for the given

nonsteady flight movements. We will therefore let ¢ = c (w).

3.l. Maximum Energy Gain with Altitude

In Section i, with a fixed E and V, the most favorable angle of climb was

_m calculated from Equation (8):

sin 3 m _LIS-. cos _
' V.U

I0

!

i
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" d dE

For the most Cavorable air speed we obtain fzom the condition _-_ (_) = 0

the relationship

dE u
- sin a cos a (!6)g

With (8) told (16), we have two equations for determining a and v. If ;;e

, eliminate a from (8) and (16), we will have

2

de (i + v ds 5 u (17)_r " d--_ _- " _-v) = --2-
g

This equation is very involved for a numerical treatment. The approximation /9

= 45° should be introduced. As the resuit_ Jn Section i indicate, this

assumption is justified. Equation (16) then becomes

d = i U (18)
dv 2 g

The evaluation is performed as follows:

The value a is calcula:ed from the equation a = 1/2 u for the corresponding
g

value of u. A straigh _. line with the slope a/y = av + b (b is arbitrary) is

_xtended until it intersects the curve ¢ = c (V). Equatiorr-(t8) is_satisfied--

at the intersection. All values of interest can be calculated with the values

obtained for e and V (Figure 5). The speeds thus obtc.ined are somewhat ioo

large, since 1/2 is the maximum of the function sin a • cos a.

The most favorable speed.of 59G km/h is obtained for U = 3.28-10 -2 S -1

The lift-drag ratio is then 1/13.

The most favorable angle of climb is 37°. Our assumption of a = 457 is

appr, imately fulfilled. The other values are

dE

= 0.14 Mg

dE _'

This corresponds to a rise of 9 m/s in the thermal.

The gain achieved by the increase in air speed is considerable. ]lle "

optimum air speed decreases with decreasing wind shear. The most favorable '&

values for u = 1.64"10 -2 S-I are: ' _ "i/_

., ., O,:'d

m i ,m_ I Di JiB I L I _ I i l
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V = 260 km/h

a = 40°

dE
= _ = 0.0027 ._tg

dE
d--t = 1,3 ._lg m/s

3.2. Maximum Air Speed /I.___0

"£neair sp_ed is calc-,,latedaccording to Section 2 (15) from

VR= v fl _ _-L)" V'U

For the most suitable air speed the condition dVR/dV = 0 offers the definitive

equation

dE n (19)
dv g

This equation differs from (18) only by the factor 2. The evaluation is per-

formed analogously to the precedure in Section 3.1. We can see immediately

from Figure 5 that for u = 1.64-10-2 S-J the most favorable speed is 390 km/h,

while for u = 3.28"10 -2 S-1 the pilot should fly at the highest possibie speed.-
d_

In the given range _-_ always remains smaller than u' g "

The speeds calculated with approximation (!5) are somewhat higher than

the optimum speed in reality.

_Veobtain the following values:

For u = 3.28-10 -2 S-1, we will have V - 440 km/h.

- The air speed is VR = 320 kin/h, and as the angles of inclination we will

have

a = 75 ° a* = 15°

According to (19), for u = 1.64"10-2 S-I we will have an air speed of 390 |

115 km,/h: a = 57 ° , a* = 33°).km/h (vR

Due to the poor approximation, this value is already somewhat further i

removed from the optimum value. For example, for V = 300 km/h the air speed

is already 145 km/h.

12 .
('?d5
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4. Flight in the Jet Stream /1_1

The above estimates indicate that it must be technlcally possible to make

long soaring flights in the region of strong wind shear in the jet stream. To

be sure, the flight will differ from the conventional type. There are many

more parameters for the pilot to consider. In flights in thermals and rising
J

air currents, the rate-of-climb indicator or "Tevar" shows us how we are to

act. In the jet stream, the strong turbulence and the stationaz-/ ascending and

descending air currents enter as important factors into the effect of wind shear

shear studied in this paper. The pilot in any case should have available a

device that makes it possible for him to separate the effects of ascending, air

currents and wind shear. It would be a big help if the value u could be

measured. This might be done thlough (5). We write this equation in the form

dv
d-t-+ g sin _ = vu cos a sin _ - gE

dv

where _ and g'sin _ have different signs.

dv

The magnitude _-_ can technically be measured by differentiation of the

speed data according to the principie of the rate-of-climb indicator. _len

g sin a is the acceleration in the direction of the flight path. It can be

determined when the li_ting force is measured for a mass that can move only in

the direction of the longitudinal axis of the aircraft.

The difference between the two values is a measure of the additional

acceleration that appears as the result of wind shear, less the retardation

caused by air resistance. This difference is independent of the existing

stationary rising and descending air currents. Usable results, as expected,

can be obtained only in the severe retardation and acceleration phases. If

the angle of inc]ination of the flight path is on the order of 45°, we can

disregard g in this phase and draw conclusions regarding the value of the wind '_

shear. ,,4
"z.

For the pilot, the indication /!2 _

D=_+gsina :
"S.

would have the follgwin_ significance: ........

14
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dE dE

!. During flight along an inciinced path, D as well as _ and _-_ are

positive.

This is an indication that the energy gain is a consequence of the

existing wind shear. A flight maneuver in accordance with the versions
dE dE

described above should be carried out. If D and _-_ and _ are negative, the

' direction of flight should be reversed.

dE dE

2. D is zcr_, dh- and _ are positive. In 'this case, the energy gain can

be attributed to a stationary rise. The pilot should fly in circles or

straight ahead. The pilot's stomach will be responsible for this decision.

dE
3. D is positive and _l-_-is less than zero; the energy gain due to wind

shear is negated by powerful downward air currents. _he pilot mu5 _ repeat

the flight maneuver with alternating climbing and descent.

It should also be pointed out here that flights must be _.de on sharply

inclined paths to determine the wind shear.

A long-distance flight in the jet stream could proceed as follows:

The launching takes place in the lee wave. A_ certain altitudes-pr_Ss6d -_

by meteorologists, flight along a path inclined at 40-45 ° is assLumed and the

value of D is observed. If it is markedly different from zero, the pilot can

leave the wave and begin the climbing and desc$,A_ cycle. As long as D is not
dE dE

equal to zero, the pilo_ is in a zone of strong wind shear. Even if _ or _-_

is less than zero, there is no need for concern. If D is equal to zero and
dE dE

_}[ or _-_ is positive, the 'Jilot should fly in circles or straight ahead. If he_13

Stops climbing, he must r,;sume flight o_ an inclined path in order to find i
l

areas with strong wind shear. This continues until the jet stream is lost.

Then the pilot continues flying in the thermal at lower altitude. It is to
$

be expected that in view of the high wind velocity in the jet stream (up to

200 km/h) and the high air speed relative to the air (up to 500 km/h according _

to this estimate), very high speeds rel_ative to the ground (up to 500 km/h) can

be attained. The numerical vzlues obtained constitute a rough approximation.

They do show, however, that more attention should be given to dynamic soaring. ,_

All of the relationships obtained _ndicate that rather fast aircraft mayi

!15
,, +._,, Odd
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be used for flying in the jet stream, For this reason, jet trainers are very

valuable for test flights in the jet stream. The poorer li±t-drag ratio that

they have relative to gliders is compensated by their higher speed. They can

reach the required altitudes without difficulty and can also fly the somewhat

complex patterns.

%

.?
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_=... _ _ _

- d dE ....
For the most £avorable azr speed we obtain from the condition _ (_) = 0
the relationship

dE u
- sin e cos _ (!6)_V g

With (8) and (16), we have two equations for determining a and v. If _'_

eliminate a from (8) and (16), we will have

e de (1 + v de 3 u2T " d-V T "_) = -_ (17)
g

_is equation is very involved for a numerical treatment. The approximation /_

= 45° should be introduced. As the results Jn Section 1 indicate, this

assumption is justified. Equation (16) then becomes

- d lu
_-=:_ _ (18)

1_heevaluation is performed as follows:

The value a is calculated from the equation a = 1/2 u_for the corresponding
g

value of u. A straigh •_ line with the slope a/y = av + b (b is arbitrary) is :

_x_ended unt_ it intersects _he curve ¢ = e (V).-Equation--(-18)J_-_-zrtis_d-_

at the intersection. All values of interest can be calculated with the values

obtained for e and V (Figure 5). The s_eeds thus obt_,inedare somewhat too

large, since 1/2 is the maximum of the function sin a • cos a.

- The most favorable speed.of 390 km/h is obtained for U = 3.28.10-2 S-1.

_1_elift-drag ratio is then 1/13.

_ The most favorable angle of cli_ is 37°. Our asstunptionof a = 45 °_ is

_ppr' imately fulfilled. The other val.uesare

dE
--= 0.14 Mg

"'" dh

dE
_ _ 9 Mg _/s

-- !

_his corresponds to a rise of 9 mls in the thermal.

The gain achieved by the increase in air speed is considerable• _le
I

o_timum air speed decreases with decreasing wind shear. The most favorable

values for u = 1.64"10 -2 S-1 are: ';"/i

L...... L....... -4-1
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